AI to Enable Accurate Modelling of Data Storage System Performance
Researchers at the HSE Faculty of Computer Science have developed a new approach to modelling data storage systems based on generative machine learning models. This approach makes it possible to accurately predict the key performance characteristics of such systems under various conditions. Results have been published in the IEEE Access journal.
Data storage systems play an important role in today’s digital world, as they are responsible for the safety and prompt availability of vast amounts of information. These systems consist of many components, including controllers, HDD and SSD disks, as well as cache memory, which work together to ensure fast and efficient operation. To achieve optimal performance, it is essential to accurately predict how these systems will function in different scenarios, such as when the load on the system changes.
Researchers at the HSE Faculty of Computer Science developed a new approach to modelling data storage system performance, which relies on generative machine learning models. The authors proposed a method that provides high-precision predictions of the key performance characteristics of the systems: the number of input/output operations per second (IOPS) and latency.
The modelling includes two stages. First, the scientists collect data by measuring the system’s performance under various loads and configurations. This data is then fed to two special generative models: the CatBoost regression model and the normalizing flow model. CatBoost works well with tabular data and can accurately predict average values and performance deviations. The normalizing flow model produces a complete distribution of possible outcomes, taking into account data uncertainties and variability.
Mikhail Hushchyn
‘One of the main advantages of our method is that it does not require detailed knowledge of the internal structure of the system components. This is often impossible due to the manufacturers’ trade secrets. Instead, our generative models are trained directly on real-world data. For instance, in our study, we trained a model using 300,000 measurements. This makes our approach versatile and applicable to any type of data storage system,’ says study author Mikhail Hushchyn, a senior research fellow at the HSE Faculty of Computer Science.
The researchers tested the accuracy of the proposed approach using Little's law, a fundamental principle of queuing theory. According to test results, these predictions are highly consistent with real observations: prediction errors range from just 4–10% for IOPS and 3–16% for latency, while the correlation with the observed values reaches 0.99.
Aziz Temirkhanov
‘Our proposed approach opens up broad prospects for optimising and planning the operation of data centres. It makes it possible to predict the behaviour of the system amid load changes, identify potential performance issues, and optimise power consumption. Furthermore, expensive physical experiments are no longer required for accurate modelling,’ stated Aziz Temirkhanov, a junior research fellow at the Laboratory of Methods for Big Data Analysis.
The experimental code and measurements of the storage system performance are publicly available.
The research was carried out within the Mirror Laboratories project of HSE University on improving the efficiency of data centres and data storage systems using artificial intelligence methods.
See also:
‘Economic Growth Without the AI Factor Is No Longer Possible’
The International Summer Institute on AI in Education has opened in Shanghai. The event is organised by the HSE Institute of Education in partnership with East China Normal University (ECNU). More than 50 participants and key speakers from over ten countries across Asia, Europe, North and South America have gathered to discuss the use of AI technologies in education and beyond.
HSE Linguists Study How Bilinguals Use Phrases with Numerals in Russian
Researchers at HSE University analysed over 4,000 examples of Russian spoken by bilinguals for whom Russian is a second language, collected from seven regions of Russia. They found that most non-standard numeral constructions are influenced not only by the speakers’ native languages but also by how frequently these expressions occur in everyday speech. For example, common phrases like 'two hours' or 'five kilometres’ almost always match the standard literary form, while less familiar expressions—especially those involving the numerals two to four or collective forms like dvoe and troe (used for referring to people)—often differ from the norm. The study has been published in Journal of Bilingualism.
Overcoming Baby Duck Syndrome: How Repeated Use Improves Acceptance of Interface Updates
Users often prefer older versions of interfaces due to a cognitive bias known as the baby duck syndrome, where their first experience with an interface becomes the benchmark against which all future updates are judged. However, an experiment conducted by researchers from HSE University produced an encouraging result: simply re-exposing users to the updated interface reduced the bias and improved their overall perception of the new version. The study has been published in Cognitive Processing.
Mathematicians from HSE Campus in Nizhny Novgorod Prove Existence of Robust Chaos in Complex Systems
Researchers from the International Laboratory of Dynamical Systems and Applications at the HSE Campus in Nizhny Novgorod have developed a theory that enables a mathematical proof of robust chaotic dynamics in networks of interacting elements. This research opens up new possibilities for exploring complex dynamical processes in neuroscience, biology, medicine, chemistry, optics, and other fields. The study findings have been accepted for publication in Physical Review Letters, a leading international journal. The findings are available on arXiv.org.
Recommender Systems: New Algorithms and Current Practices
The AI and Digital Science Institute at the HSE Faculty of Computer Science hosted a conference focused on cutting-edge recommender system technologies. In an atmosphere of active knowledge sharing among leading industry experts, participants were introduced to the latest advancements and practical solutions in recommender model development.
Large Language Models No Longer Require Powerful Servers
Scientists from Yandex, HSE University, MIT, KAUST, and ISTA have made a breakthrough in optimising LLMs. Yandex Research, in collaboration with leading science and technology universities, has developed a method for rapidly compressing large language models (LLMs) without compromising quality. Now, a smartphone or laptop is enough to work with LLMs—there's no need for expensive servers or high-powered GPUs.
Researchers Present the Rating of Ideal Life Partner Traits
An international research team surveyed over 10,000 respondents across 43 countries to examine how closely the ideal image of a romantic partner aligns with the actual partners people choose, and how this alignment shapes their romantic satisfaction. Based on the survey, the researchers compiled two ratings—qualities of an ideal life partner and the most valued traits in actual partners. The results have been published in the Journal of Personality and Social Psychology.
Trend-Watching: Radical Innovations in Creative Industries and Artistic Practices
The rapid development of technology, the adaptation of business processes to new economic realities, and changing audience demands require professionals in the creative industries to keep up with current trends and be flexible in their approach to projects. Between April and May 2025, the Institute for Creative Industries Development (ICID) at the HSE Faculty of Creative Industries conducted a trend study within the creative sector.
From Neural Networks to Stock Markets: Advancing Computer Science Research at HSE University in Nizhny Novgorod
The International Laboratory of Algorithms and Technologies for Network Analysis (LATNA), established in 2011 at HSE University in Nizhny Novgorod, conducts a wide range of fundamental and applied research, including joint projects with large companies: Sberbank, Yandex, and other leaders of the IT industry. The methods developed by the university's researchers not only enrich science, but also make it possible to improve the work of transport companies and conduct medical and genetic research more successfully. HSE News Service discussed work of the laboratory with its head, Professor Valery Kalyagin.
Children with Autism Process Sounds Differently
For the first time, an international team of researchers—including scientists from the HSE Centre for Language and Brain—combined magnetoencephalography and morphometric analysis in a single experiment to study children with Autism Spectrum Disorder (ASD). The study found that children with autism have more difficulty filtering and processing sounds, particularly in the brain region typically responsible for language comprehension. The study has been published in Cerebral Cortex.